Avaleht / FAQ

FAQ

oleme kokku võtnud mõned levinumad probleemid

Produktsioon

  • Q.

    Kas teete kohandatud tooteid?

    A.

    Jah. Pakume klientidele OEM/ODM lahendusi. OEM-i minimaalne tellimiskogus on 10,000 XNUMX tükki.

  • Q.

    Kuidas tooteid pakendate?

    A.

    Pakime vastavalt ÜRO eeskirjadele ja saame pakkuda ka spetsiaalseid pakendeid vastavalt kliendi nõudmistele.

  • Q.

    Milline tunnistus teil on?

    A.

    Meil on ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Kas pakute tasuta näidiseid?

    A.

    Pakume akusid, mille võimsus ei ületa 10 WH, tasuta näidistena.

  • Q.

    Mis on teie tootmisvõimsus?

    A.

    120,000 150,000-XNUMX XNUMX tükki päevas, igal tootel on erinev tootmisvõimsus, saate üksikasjalikku teavet arutada vastavalt e-postile.

  • Q.

    Kaua tootmiseks kulub?

    A.

    Umbes 35 päeva. Täpsema aja saab kokku leppida meili teel.

  • Q.

    Kui kaua on teie proovide valmistamise aeg?

    A.

    Kaks nädalat (14 päeva).

Muu

  • Q.

    Millised on maksetingimused?

    A.

    Üldjuhul aktsepteerime tagatisrahana 30% ettemaksu ja lõppmaksena 70% enne tarnimist. Teiste meetoditega saab läbi rääkida.

  • Q.

    Millised on tarnetingimused?

    A.

    Pakume: FOB ja CIF.

  • Q.

    Mis on makseviis?

    A.

    Aktsepteerime makseid TT kaudu.

  • Q.

    Millistel turgudel olete müünud?

    A.

    Oleme vedanud kaupu Põhja-Euroopasse, Lääne-Euroopasse, Põhja-Ameerikasse, Lähis-Idasse, Aasiasse, Aafrikasse ja mujale.

Tehnoloogia

  • Q.

    Mis on aku?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    What are the differences between primary batteries and secondary batteries?

    A.

    Peamine erinevus seisneb selles, et toimeaine on erinev. Teisese aku aktiivne materjal on pööratav, samas kui primaaraku aktiivne materjal mitte. Primaaraku isetühjenemine on palju väiksem kui sekundaarakul. Siiski on sisetakistus palju suurem kui sekundaarakul, seega on kandevõime väiksem. Lisaks on esmase aku massispetsiifiline võimsus ja mahuspetsiifiline võimsus olulisemad kui saadaolevatel laetavatel akudel.

  • Q.

    What is the electrochemical principle of Ni-MH batteries?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    What is the electrochemical principle of lithium-ion batteries?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    What are the commonly used standards for batteries?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    What is the main structure of the Ni-MH battery?

    A.

    Nikkelmetallhüdriidpatareide põhikomponendid on positiivse elektroodi leht (nikkeloksiid), negatiivse elektroodi leht (vesinikusalvesti sulam), elektrolüüt (peamiselt KOH), membraanipaber, tihendusrõngas, positiivse elektroodi kork, aku korpus jne.

  • Q.

    What are the main structural components of lithium-ion batteries?

    A.

    Liitium-ioonakude põhikomponendid on ülemine ja alumine akukate, positiivse elektroodi leht (aktiivseks materjaliks on liitiumkoobaltoksiid), separaator (spetsiaalne komposiitmembraan), negatiivne elektrood (aktiivseks materjaliks on süsinik), orgaaniline elektrolüüt, aku korpus (jagatud kahte tüüpi teraskestaks ja alumiiniumkestaks) ja nii edasi.

  • Q.

    What is the internal resistance of the battery?

    A.

    See viitab takistusele, mida kogeb akut läbiv vool, kui aku töötab. See koosneb oomilisest sisemisest takistusest ja polarisatsiooni sisetakistusest. Aku märkimisväärne sisemine takistus vähendab aku tühjenemise tööpinget ja lühendab tühjenemise aega. Sisemist takistust mõjutavad peamiselt aku materjal, tootmisprotsess, aku struktuur ja muud tegurid. See on oluline parameeter aku jõudluse mõõtmiseks. Märkus. Üldiselt on laetud olekus sisetakistus standard. Aku sisetakistuse arvutamiseks peaks see kasutama oomivahemikus oleva multimeetri asemel spetsiaalset sisetakistusmõõturit.

  • Q.

    What is the nominal voltage?

    A.

    Aku nimipinge viitab pingele, mis kuvatakse tavalise töötamise ajal. Sekundaarse nikkel-kaadmiumnikkel-vesinikaku nimipinge on 1.2 V; sekundaarse liitiumaku nimipinge on 3.6 V.

  • Q.

    What is open circuit voltage?

    A.

    Avatud vooluringi pinge viitab aku positiivse ja negatiivse elektroodi potentsiaalsele erinevusele, kui aku ei tööta, st kui vooluahelat ei läbi. Tööpinge, tuntud ka kui klemmipinge, viitab aku positiivse ja negatiivse pooluse vahelisele potentsiaalsele erinevusele, kui aku töötab, st kui ahelas on liigvool.

  • Q.

    Mis on aku mahutavus?

    A.

    Aku võimsus jaguneb nimivõimsuseks ja tegelikuks võimsuseks. Aku nimimahtuvus viitab nõudele või garantiidele, et aku peaks tormi projekteerimise ja valmistamise ajal tühjendama teatud tühjendustingimustel minimaalselt elektrienergiat. IEC standard näeb ette, et nikkel-kaadmium ja nikkel-metallhüdriid akusid laetakse 0.1C juures 16 tundi ja tühjenetakse 0.2C kuni 1.0V juures temperatuuril 20°C±5°C. Aku nimimahtuvust väljendatakse kui C5. Liitiumioonakud peavad laadima 3 tundi keskmisel temperatuuril, konstantse voolu (1C)-konstantse pinge (4.2 V) reguleerimisel nõudlikes tingimustes ja seejärel tühjenema 0.2–2.75 V, kui tühjenenud elekter on nimivõimsusega. Aku tegelik võimsus viitab tormi tegelikule võimsusele teatud tühjenemise tingimustes, mida mõjutavad peamiselt tühjenemise kiirus ja temperatuur (nii rangelt võttes peaks aku mahutavus määrama laadimis- ja tühjenemistingimused). Aku mahu ühikuks on Ah, mAh (1Ah=1000mAh).

  • Q.

    What is the residual discharge capacity of the battery?

    A.

    Kui laetav aku tühjeneb suure vooluga (nt 1C või rohkem), on voolu liigvoolu sisemise difusioonikiiruse "pudelikaela efekti" tõttu aku jõudnud klemmi pingeni, kui aku ei ole täielikult tühjenenud. , ja seejärel kasutab väikest voolu, näiteks 0.2 C, võib jätkata eemaldamist, kuni 1.0 V/tk (nikkel-kaadmium- ja nikkel-vesinikaku) ja 3.0 V/tk (liitiumaku), vabanevat võimsust nimetatakse jääkvõimsuseks.

  • Q.

    What is a discharge platform?

    A.

    Ni-MH laetavate akude tühjendusplatvorm viitab tavaliselt pingevahemikule, milles aku tööpinge on suhteliselt stabiilne, kui see tühjeneb konkreetse tühjendussüsteemi all. Selle väärtus on seotud tühjendusvooluga. Mida suurem on vool, seda väiksem on kaal. Liitium-ioonakude tühjendusplatvorm peab üldjuhul lõpetama laadimise, kui pinge on 4.2 V ja praegune temperatuur on konstantsel pingel alla 0.01 C, seejärel jätke see 10 minutiks seisma ja tühjendab 3.6 V-ni mis tahes tühjenemiskiirusega. praegune. See on vajalik standard akude kvaliteedi mõõtmiseks.

  • Q.

    What is the marking method for rechargeable batteries specified by IEC?

    A.

    According to the IEC standard, the mark of Ni-MH battery consists of 5 parts. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Näiteks HF18/07/49 tähistab ruudukujulist nikkel-metallhüdriidakut laiusega 18 mm, 7 mm ja kõrgusega 49 mm. KRMT33/62HH esindab nikkel-kaadmiumakut; tühjenemiskiirus on vahemikus 0.5-3.5, kõrge temperatuuriga seeria üksikaku (ilma ühendusdetailita), läbimõõt 33 mm, kõrgus 62 mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) The first letter: indicates the harmful electrode material of the battery. I—represents lithium-ion with built-in battery; L—represents lithium metal electrode or lithium alloy electrode. 03) The second letter: indicates the cathode material of the battery. C—cobalt-based electrode; N—nickel-based electrode; M—manganese-based electrode; V—vanadium-based electrode. 04) The third letter: indicates the shape of the battery. R-represents cylindrical battery; L-represents square battery. 05) Numbers: Cylindrical battery: 5 numbers respectively indicate the diameter and height of the storm. The unit of diameter is a millimeter, and the size is a tenth of a millimeter. When any diameter or height is greater than or equal to 100mm, it should add a diagonal line between the two sizes. Square battery: 6 numbers indicate the thickness, width, and height of the storm in millimeters. When any of the three dimensions is greater than or equal to 100mm, it should add a slash between the dimensions; if any of the three dimensions is less than 1mm, the letter "t" is added in front of this dimension, and the unit of this dimension is one-tenth of a millimeter. Näiteks ICR18650 tähistab silindrilist sekundaarset liitiumioonakut; Katoodi materjal on koobalt, selle läbimõõt on umbes 18 mm ja kõrgus umbes 65 mm. ICR20/1050. ICP083448 esindab ruudukujulist sekundaarset liitiumioonakut; Katoodi materjal on koobalt, selle paksus on umbes 8 mm, laius on umbes 34 mm ja kõrgus umbes 48 mm. ICP08/34/150 esindab ruudukujulist sekundaarset liitiumioonakut; Katoodi materjal on koobalt, selle paksus on umbes 8 mm, laius on umbes 34 mm ja kõrgus umbes 150 mm.

  • Q.

    What are the packaging materials of the battery?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    What is the purpose of battery packaging, assembly, and design?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    What are the main aspects of the performance of the secondary battery in general?

    A.

    See hõlmab peamiselt pinget, sisemist takistust, võimsust, energiatihedust, siserõhku, isetühjenemise kiirust, tsükli eluiga, tihendusjõudlust, ohutust, ladustamist, välimust jne. Samuti on olemas ülelaadimine, ülelaadimine ja korrosioonikindlus.

  • Q.

    What are the reliability test items of the battery?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Millised on aku ohutuse testimise elemendid?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    What are the standard charging methods?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    What is the standard charge and discharge of Ni-MH batteries?

    A.

    IEC rahvusvaheline standard näeb ette, et nikkelmetallhüdriidakude standardne laadimine ja tühjendamine on järgmine: esmalt tühjendage aku 0.2C kuni 1.0V/tk, seejärel laadige 0.1C juures 16 tundi, jätke 1 tund ja asetage see. 0.2C kuni 1.0V/tk, st aku laadimiseks ja tühjendamiseks.

  • Q.

    What is pulse charging? What is the impact on battery performance?

    A.

    Impulsslaadimine kasutab tavaliselt laadimist ja tühjendamist, seadistades 5 sekundiks ja seejärel vabastades 1 sekundiks. See vähendab suurema osa laadimisprotsessi käigus tekkivast hapnikust tühjendusimpulsi all elektrolüütideks. See mitte ainult ei piira sisemise elektrolüüdi aurustumist, vaid need vanad akud, mis on tugevalt polariseeritud, taastuvad järk-järgult või lähenevad algsele mahutavusele pärast 5-10 laadimis- ja tühjenemiskorda, kasutades seda laadimismeetodit.

  • Q.

    What is trickle charging?

    A.

    Ajulaadimist kasutatakse aku isetühjenemise tõttu pärast täielikku laadimist põhjustatud võimsuse kaotuse kompenseerimiseks. Üldjuhul kasutatakse ülaltoodud eesmärgi saavutamiseks impulssvoolu laadimist.

  • Q.

    What is charging efficiency?

    A.

    Laadimistõhusus viitab sellele, mil määral aku laadimisprotsessi ajal tarbitud elektrienergia muundatakse keemiliseks energiaks, mida aku suudab salvestada. Seda mõjutavad peamiselt akutehnoloogia ja tormi töökeskkonna temperatuur – üldiselt, mida kõrgem on ümbritseva õhu temperatuur, seda madalam on laadimise efektiivsus.

  • Q.

    What is discharge efficiency?

    A.

    Tühjenemise efektiivsus viitab tegelikule võimsusele, mis tühjeneb terminali pingest teatud tühjendustingimustel nimivõimsuseni. Seda mõjutavad peamiselt tühjenduskiirus, ümbritseva õhu temperatuur, sisemine takistus ja muud tegurid. Üldiselt, mida suurem on tühjendusmäär, seda suurem on tühjendusmäär. Mida madalam on tühjendamise efektiivsus. Mida madalam on temperatuur, seda madalam on tühjendamise efektiivsus.

  • Q.

    What is the output power of the battery?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    What is the self-discharge of the secondary battery? What is the self-discharge rate of different types of batteries?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    What is a 24-hour self-discharge test?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    What is the difference between the internal resistance of the charged state and the internal resistance of the discharged state?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    What is static resistance? What is dynamic resistance?

    A.

    Staatiline sisemine takistus on aku sisemine vastupidavus tühjendamisel ja dünaamiline sisemine takistus on aku sisemine vastupidavus laadimise ajal.

  • Q.

    Is the standard overcharge resistance test?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    What is the IEC standard cycle life test?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    What is the internal pressure of the battery?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    What is the standard charge retention test?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    What is a short circuit test?

    A.

    Kasutage juhet sisetakistusega ≤100mΩ, et ühendada täislaetud aku positiivsed ja negatiivsed poolused plahvatuskindlas karbis, et lühistada positiivsed ja negatiivsed poolused. Aku ei tohi plahvatada ega süttida.

  • Q.

    What are the high temperature and high humidity tests?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    What is a temperature rise experiment?

    A.

    After the battery is fully charged, put it into the oven and heat up from room temperature at a rate of 5°C/min.After the battery is fully charged, put it into the oven and heat up from room temperature at a rate of 5°C/min. When the oven temperature reaches 130°C, keep it for 30 minutes. The battery should not explode or catch fire. When the oven temperature reaches 130°C, keep it for 30 minutes. The battery should not explode or catch fire.

  • Q.

    What is a temperature cycling experiment?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    What is a drop test?

    A.

    Pärast aku või akuploki täielikku laadimist kukutatakse see kolm korda 1 m kõrguselt betooni (või tsemendi) pinnale, et saada juhuslikes suundades lööke.

  • Q.

    What is a vibration experiment?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    What is an impact test?

    A.

    Kui aku on täielikult laetud, asetage kõva varras horisontaalselt ja kukutage kõvale vardale teatud kõrguselt 20-naelane objekt. Aku ei tohi plahvatada ega süttida.

  • Q.

    What is a penetration experiment?

    A.

    Pärast aku täielikku laadimist lükake kindla läbimõõduga nael läbi tormi keskpunkti ja jätke tihvt aku sisse. Aku ei tohi plahvatada ega süttida.

  • Q.

    What is a fire experiment?

    A.

    Asetage täislaetud aku kütteseadmele, millel on unikaalne tulekaitsekate, nii et kaitsekaanest ei pääse praht läbi.

  • Q.

    What certifications have the company's products passed?

    A.

    See on läbinud ISO9001:2000 kvaliteedisüsteemi sertifikaadi ja ISO14001:2004 keskkonnakaitsesüsteemi sertifikaadi; toode on saanud EL-i CE-sertifikaadi ja Põhja-Ameerika UL-sertifikaadi, läbinud SGS-i keskkonnakaitsetesti ja saanud Ovonicu patendilitsentsi; samal ajal on PICC heaks kiitnud ettevõtte tooted maailmas Scope emissioonikindlustuse.

  • Q.

    What is a Ready-To-Use battery?

    A.

    Kasutusvalmis aku on ettevõtte turule toonud uut tüüpi Ni-MH aku, millel on kõrge laetuse säilivusaste. See on salvestuskindel aku, millel on primaar- ja sekundaaraku topeltjõudlus ning see võib asendada esmast akut. See tähendab, et akut saab taaskasutada ja selle säilitusvõimsus on pärast sama kaua hoidmist suurem kui tavalistel Ni-MH akudel.

  • Q.

    Miks on kasutusvalmis (HFR) ideaalne toode ühekordselt kasutatavate patareide asendamiseks?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    What are the precautions when using the battery?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    What is the difference between various standard rechargeable batteries?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    What is the rate of discharge of the battery? What is the hourly rate of release of the storm?

    A.

    Kiirlahendus viitab kiiruse suhtele tühjenemisvoolu (A) ja nimivõimsuse (A•h) vahel põlemisel. Tunnimäära tühjenemine viitab tundidele, mis on vajalikud nimivõimsuse tühjendamiseks konkreetse väljundvoolu korral.

  • Q.

    Why is it necessary to keep the battery warm when shooting in winter?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    What is the operating temperature range of lithium-ion batteries?

    A.

    Laadige -10-45 ℃ tühjendamine -30-55 ℃

  • Q.

    Can batteries of different capacities be combined?

    A.

    Kui segate uusi ja vanu erineva võimsusega akusid või kasutate neid koos, võib esineda lekkeid, nullpinget jne. See on tingitud võimsuse erinevusest laadimisprotsessis, mis põhjustab laadimise ajal mõne aku ülelaadimise. Mõned akud ei ole täielikult laetud ja neil on tühjenemise ajal maht. Kõrge aku ei ole täielikult tühjenenud ja madala võimsusega aku on liiga tühjenenud. Sellises nõiaringis on aku kahjustatud ja lekib või selle pinge on madal (null).

  • Q.

    What is an external short circuit, and what impact does it have on battery performance?

    A.

    Aku kahe välimise otsa ühendamine mis tahes juhtmega põhjustab välise lühise. Lühike kursus võib erinevatele akutüüpidele tuua kaasa tõsiseid tagajärgi, nagu elektrolüüdi temperatuuri tõus, siseõhu rõhu tõus jne. Kui õhurõhk ületab akukorgi vastupidavuspinge, hakkab aku lekkima. Selline olukord kahjustab tõsiselt akut. Kui kaitseklapp ebaõnnestub, võib see isegi plahvatuse põhjustada. Seetõttu ärge lühistage akut väliselt.

  • Q.

    What are the main factors affecting battery life?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Can the battery be stored in the appliance after it is used up or if it is not used for a long time?

    A.

    Kui seade ei kasuta elektriseadet pikema aja jooksul, on kõige parem eemaldada aku ja panna see madala temperatuuriga kuiva kohta. Kui ei, siis isegi siis, kui elektriseade on välja lülitatud, muudab süsteem aku siiski nõrga vooluga, mis lühendab tormi kasutusiga.

  • Q.

    What are the better conditions for battery storage? Do I need to charge the battery for long-term storage fully?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    What is a standard battery?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% kaadmium) ja elektrolüüt on happeline, küllastunud kaadmiumsulfaadi vesilahus, mis on küllastunud kaadmiumsulfaadi ja elavhõbesulfaadi vesilahus.

  • Q.

    What are the possible reasons for the zero voltage or low voltage of the single battery?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    What are the possible reasons for the zero voltage or low voltage of the battery pack?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    What are the control methods to prevent battery overcharging?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    What are the possible reasons why the battery or battery pack cannot be charged?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Kas te ei leidnud seda, mida tahtsite?Võta meiega ühendust

sule_valge
lähedal

Kirjuta päring siia

vastake 6 tunni jooksul, kõik küsimused on teretulnud!